Metamath Proof Explorer


Theorem unexOLD

Description: Obsolete proof of unex as of 21-Jul-2025. (Contributed by NM, 1-Jul-1994) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses unex.1 A V
unex.2 B V
Assertion unexOLD A B V

Proof

Step Hyp Ref Expression
1 unex.1 A V
2 unex.2 B V
3 1 2 unipr A B = A B
4 prex A B V
5 4 uniex A B V
6 3 5 eqeltrri A B V