Metamath Proof Explorer


Theorem unfid

Description: The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses unfid.1 φ A Fin
unfid.2 φ B Fin
Assertion unfid φ A B Fin

Proof

Step Hyp Ref Expression
1 unfid.1 φ A Fin
2 unfid.2 φ B Fin
3 unfi A Fin B Fin A B Fin
4 1 2 3 syl2anc φ A B Fin