Metamath Proof Explorer


Theorem unfilem2

Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses unfilem1.1 A ω
unfilem1.2 B ω
unfilem1.3 F = x B A + 𝑜 x
Assertion unfilem2 F : B 1-1 onto A + 𝑜 B A

Proof

Step Hyp Ref Expression
1 unfilem1.1 A ω
2 unfilem1.2 B ω
3 unfilem1.3 F = x B A + 𝑜 x
4 ovex A + 𝑜 x V
5 4 3 fnmpti F Fn B
6 1 2 3 unfilem1 ran F = A + 𝑜 B A
7 df-fo F : B onto A + 𝑜 B A F Fn B ran F = A + 𝑜 B A
8 5 6 7 mpbir2an F : B onto A + 𝑜 B A
9 fof F : B onto A + 𝑜 B A F : B A + 𝑜 B A
10 8 9 ax-mp F : B A + 𝑜 B A
11 oveq2 x = z A + 𝑜 x = A + 𝑜 z
12 ovex A + 𝑜 z V
13 11 3 12 fvmpt z B F z = A + 𝑜 z
14 oveq2 x = w A + 𝑜 x = A + 𝑜 w
15 ovex A + 𝑜 w V
16 14 3 15 fvmpt w B F w = A + 𝑜 w
17 13 16 eqeqan12d z B w B F z = F w A + 𝑜 z = A + 𝑜 w
18 elnn z B B ω z ω
19 2 18 mpan2 z B z ω
20 elnn w B B ω w ω
21 2 20 mpan2 w B w ω
22 nnacan A ω z ω w ω A + 𝑜 z = A + 𝑜 w z = w
23 1 19 21 22 mp3an3an z B w B A + 𝑜 z = A + 𝑜 w z = w
24 17 23 bitrd z B w B F z = F w z = w
25 24 biimpd z B w B F z = F w z = w
26 25 rgen2 z B w B F z = F w z = w
27 dff13 F : B 1-1 A + 𝑜 B A F : B A + 𝑜 B A z B w B F z = F w z = w
28 10 26 27 mpbir2an F : B 1-1 A + 𝑜 B A
29 df-f1o F : B 1-1 onto A + 𝑜 B A F : B 1-1 A + 𝑜 B A F : B onto A + 𝑜 B A
30 28 8 29 mpbir2an F : B 1-1 onto A + 𝑜 B A