Metamath Proof Explorer


Theorem unfilem3

Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion unfilem3 A ω B ω B A + 𝑜 B A

Proof

Step Hyp Ref Expression
1 oveq1 A = if A ω A A + 𝑜 B = if A ω A + 𝑜 B
2 id A = if A ω A A = if A ω A
3 1 2 difeq12d A = if A ω A A + 𝑜 B A = if A ω A + 𝑜 B if A ω A
4 3 breq2d A = if A ω A B A + 𝑜 B A B if A ω A + 𝑜 B if A ω A
5 id B = if B ω B B = if B ω B
6 oveq2 B = if B ω B if A ω A + 𝑜 B = if A ω A + 𝑜 if B ω B
7 6 difeq1d B = if B ω B if A ω A + 𝑜 B if A ω A = if A ω A + 𝑜 if B ω B if A ω A
8 5 7 breq12d B = if B ω B B if A ω A + 𝑜 B if A ω A if B ω B if A ω A + 𝑜 if B ω B if A ω A
9 peano1 ω
10 9 elimel if B ω B ω
11 ovex if A ω A + 𝑜 if B ω B V
12 11 difexi if A ω A + 𝑜 if B ω B if A ω A V
13 9 elimel if A ω A ω
14 eqid x if B ω B if A ω A + 𝑜 x = x if B ω B if A ω A + 𝑜 x
15 13 10 14 unfilem2 x if B ω B if A ω A + 𝑜 x : if B ω B 1-1 onto if A ω A + 𝑜 if B ω B if A ω A
16 f1oen2g if B ω B ω if A ω A + 𝑜 if B ω B if A ω A V x if B ω B if A ω A + 𝑜 x : if B ω B 1-1 onto if A ω A + 𝑜 if B ω B if A ω A if B ω B if A ω A + 𝑜 if B ω B if A ω A
17 10 12 15 16 mp3an if B ω B if A ω A + 𝑜 if B ω B if A ω A
18 4 8 17 dedth2h A ω B ω B A + 𝑜 B A