Metamath Proof Explorer


Theorem uni0

Description: The union of the empty set is the empty set. Theorem 8.7 of Quine p. 54. (Contributed by NM, 16-Sep-1993) Remove use of ax-nul . (Revised by Eric Schmidt, 4-Apr-2007) Avoid ax-11 . (Revised by TM, 1-Feb-2026)

Ref Expression
Assertion uni0 =

Proof

Step Hyp Ref Expression
1 noel ¬ y
2 1 intnan ¬ x y y
3 2 nex ¬ y x y y
4 eluni x y x y y
5 3 4 mtbir ¬ x
6 5 nel0 =