Metamath Proof Explorer


Theorem uni0b

Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004)

Ref Expression
Assertion uni0b A = A

Proof

Step Hyp Ref Expression
1 velsn x x =
2 1 ralbii x A x x A x =
3 dfss3 A x A x
4 neq0 ¬ A = y y A
5 rexcom4 x A y y x y x A y x
6 neq0 ¬ x = y y x
7 6 rexbii x A ¬ x = x A y y x
8 eluni2 y A x A y x
9 8 exbii y y A y x A y x
10 5 7 9 3bitr4ri y y A x A ¬ x =
11 rexnal x A ¬ x = ¬ x A x =
12 4 10 11 3bitri ¬ A = ¬ x A x =
13 12 con4bii A = x A x =
14 2 3 13 3bitr4ri A = A