Metamath Proof Explorer


Theorem unidif

Description: If the difference A \ B contains the largest members of A , then the union of the difference is the union of A . (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion unidif x A y A B x y A B = A

Proof

Step Hyp Ref Expression
1 uniss2 x A y A B x y A A B
2 difss A B A
3 2 unissi A B A
4 1 3 jctil x A y A B x y A B A A A B
5 eqss A B = A A B A A A B
6 4 5 sylibr x A y A B x y A B = A