Metamath Proof Explorer


Theorem unidifsnel

Description: The other element of a pair is an element of the pair. (Contributed by Thierry Arnoux, 26-Aug-2017)

Ref Expression
Assertion unidifsnel X P P 2 𝑜 P X P

Proof

Step Hyp Ref Expression
1 2onn 2 𝑜 ω
2 nnfi 2 𝑜 ω 2 𝑜 Fin
3 1 2 ax-mp 2 𝑜 Fin
4 enfi P 2 𝑜 P Fin 2 𝑜 Fin
5 3 4 mpbiri P 2 𝑜 P Fin
6 5 adantl X P P 2 𝑜 P Fin
7 diffi P Fin P X Fin
8 6 7 syl X P P 2 𝑜 P X Fin
9 8 cardidd X P P 2 𝑜 card P X P X
10 9 ensymd X P P 2 𝑜 P X card P X
11 simpl X P P 2 𝑜 X P
12 dif1card P Fin X P card P = suc card P X
13 6 11 12 syl2anc X P P 2 𝑜 card P = suc card P X
14 cardennn P 2 𝑜 2 𝑜 ω card P = 2 𝑜
15 1 14 mpan2 P 2 𝑜 card P = 2 𝑜
16 df-2o 2 𝑜 = suc 1 𝑜
17 15 16 eqtrdi P 2 𝑜 card P = suc 1 𝑜
18 17 adantl X P P 2 𝑜 card P = suc 1 𝑜
19 13 18 eqtr3d X P P 2 𝑜 suc card P X = suc 1 𝑜
20 suc11reg suc card P X = suc 1 𝑜 card P X = 1 𝑜
21 19 20 sylib X P P 2 𝑜 card P X = 1 𝑜
22 10 21 breqtrd X P P 2 𝑜 P X 1 𝑜
23 en1 P X 1 𝑜 x P X = x
24 22 23 sylib X P P 2 𝑜 x P X = x
25 simpr X P P 2 𝑜 P X = x P X = x
26 25 unieqd X P P 2 𝑜 P X = x P X = x
27 vex x V
28 27 unisn x = x
29 26 28 eqtrdi X P P 2 𝑜 P X = x P X = x
30 difssd X P P 2 𝑜 P X = x P X P
31 25 30 eqsstrrd X P P 2 𝑜 P X = x x P
32 vsnid x x
33 ssel2 x P x x x P
34 31 32 33 sylancl X P P 2 𝑜 P X = x x P
35 29 34 eqeltrd X P P 2 𝑜 P X = x P X P
36 24 35 exlimddv X P P 2 𝑜 P X P