Step |
Hyp |
Ref |
Expression |
1 |
|
2onn |
|
2 |
|
nnfi |
|
3 |
1 2
|
ax-mp |
|
4 |
|
enfi |
|
5 |
3 4
|
mpbiri |
|
6 |
5
|
adantl |
|
7 |
|
diffi |
|
8 |
6 7
|
syl |
|
9 |
8
|
cardidd |
|
10 |
9
|
ensymd |
|
11 |
|
simpl |
|
12 |
|
dif1card |
|
13 |
6 11 12
|
syl2anc |
|
14 |
|
cardennn |
|
15 |
1 14
|
mpan2 |
|
16 |
|
df-2o |
|
17 |
15 16
|
eqtrdi |
|
18 |
17
|
adantl |
|
19 |
13 18
|
eqtr3d |
|
20 |
|
suc11reg |
|
21 |
19 20
|
sylib |
|
22 |
10 21
|
breqtrd |
|
23 |
|
en1 |
|
24 |
22 23
|
sylib |
|
25 |
|
simplll |
|
26 |
25
|
elexd |
|
27 |
|
simplr |
|
28 |
|
sneqbg |
|
29 |
28
|
biimpar |
|
30 |
29
|
ad4ant14 |
|
31 |
27 30
|
eqtr4d |
|
32 |
31
|
ineq2d |
|
33 |
|
disjdif |
|
34 |
|
inidm |
|
35 |
32 33 34
|
3eqtr3g |
|
36 |
35
|
eqcomd |
|
37 |
|
snprc |
|
38 |
36 37
|
sylibr |
|
39 |
26 38
|
pm2.65da |
|
40 |
39
|
neqned |
|
41 |
|
simpr |
|
42 |
41
|
unieqd |
|
43 |
|
vex |
|
44 |
43
|
unisn |
|
45 |
42 44
|
eqtrdi |
|
46 |
40 45
|
neeqtrrd |
|
47 |
46
|
necomd |
|
48 |
24 47
|
exlimddv |
|