Metamath Proof Explorer


Theorem unidmex

Description: If F is a set, then U. dom F is a set. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses unidmex.f φ F V
unidmex.x X = dom F
Assertion unidmex φ X V

Proof

Step Hyp Ref Expression
1 unidmex.f φ F V
2 unidmex.x X = dom F
3 dmexg F V dom F V
4 uniexg dom F V dom F V
5 1 3 4 3syl φ dom F V
6 2 5 eqeltrid φ X V