Metamath Proof Explorer


Theorem unidmvol

Description: The union of the Lebesgue measurable sets is RR . (Contributed by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion unidmvol dom vol =

Proof

Step Hyp Ref Expression
1 unissb dom vol x dom vol x
2 mblss x dom vol x
3 1 2 mprgbir dom vol
4 rembl dom vol
5 unissel dom vol dom vol dom vol =
6 3 4 5 mp2an dom vol =