Metamath Proof Explorer


Theorem unidom

Description: An upper bound for the cardinality of a union. Theorem 10.47 of TakeutiZaring p. 98. (Contributed by NM, 25-Mar-2006) (Proof shortened by Mario Carneiro, 1-Sep-2015)

Ref Expression
Assertion unidom A V x A x B A A × B

Proof

Step Hyp Ref Expression
1 uniiun A = x A x
2 iundom A V x A x B x A x A × B
3 1 2 eqbrtrid A V x A x B A A × B