Metamath Proof Explorer


Theorem unifi

Description: The finite union of finite sets is finite. Exercise 13 of Enderton p. 144. (Contributed by NM, 22-Aug-2008) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Assertion unifi A Fin A Fin A Fin

Proof

Step Hyp Ref Expression
1 dfss3 A Fin x A x Fin
2 uniiun A = x A x
3 iunfi A Fin x A x Fin x A x Fin
4 2 3 eqeltrid A Fin x A x Fin A Fin
5 1 4 sylan2b A Fin A Fin A Fin