Metamath Proof Explorer


Theorem unifndxnbasendx

Description: The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024)

Ref Expression
Assertion unifndxnbasendx UnifSet ndx Base ndx

Proof

Step Hyp Ref Expression
1 1re 1
2 1nn 1
3 3nn0 3 0
4 1nn0 1 0
5 1lt10 1 < 10
6 2 3 4 5 declti 1 < 13
7 1 6 gtneii 13 1
8 unifndx UnifSet ndx = 13
9 basendx Base ndx = 1
10 8 9 neeq12i UnifSet ndx Base ndx 13 1
11 7 10 mpbir UnifSet ndx Base ndx