Metamath Proof Explorer


Theorem uniiccvol

Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 φ F : 2
uniioombl.2 φ Disj x . F x
uniioombl.3 S = seq 1 + abs F
Assertion uniiccvol φ vol * ran . F = sup ran S * <

Proof

Step Hyp Ref Expression
1 uniioombl.1 φ F : 2
2 uniioombl.2 φ Disj x . F x
3 uniioombl.3 S = seq 1 + abs F
4 ovolficcss F : 2 ran . F
5 1 4 syl φ ran . F
6 ovolcl ran . F vol * ran . F *
7 5 6 syl φ vol * ran . F *
8 eqid abs F = abs F
9 8 3 ovolsf F : 2 S : 0 +∞
10 1 9 syl φ S : 0 +∞
11 10 frnd φ ran S 0 +∞
12 icossxr 0 +∞ *
13 11 12 sstrdi φ ran S *
14 supxrcl ran S * sup ran S * < *
15 13 14 syl φ sup ran S * < *
16 ssid ran . F ran . F
17 3 ovollb2 F : 2 ran . F ran . F vol * ran . F sup ran S * <
18 1 16 17 sylancl φ vol * ran . F sup ran S * <
19 1 2 3 uniioovol φ vol * ran . F = sup ran S * <
20 ioossicc 1 st F x 2 nd F x 1 st F x 2 nd F x
21 df-ov 1 st F x 2 nd F x = . 1 st F x 2 nd F x
22 df-ov 1 st F x 2 nd F x = . 1 st F x 2 nd F x
23 20 21 22 3sstr3i . 1 st F x 2 nd F x . 1 st F x 2 nd F x
24 23 a1i F : 2 x . 1 st F x 2 nd F x . 1 st F x 2 nd F x
25 ffvelrn F : 2 x F x 2
26 25 elin2d F : 2 x F x 2
27 1st2nd2 F x 2 F x = 1 st F x 2 nd F x
28 26 27 syl F : 2 x F x = 1 st F x 2 nd F x
29 28 fveq2d F : 2 x . F x = . 1 st F x 2 nd F x
30 28 fveq2d F : 2 x . F x = . 1 st F x 2 nd F x
31 24 29 30 3sstr4d F : 2 x . F x . F x
32 fvco3 F : 2 x . F x = . F x
33 fvco3 F : 2 x . F x = . F x
34 31 32 33 3sstr4d F : 2 x . F x . F x
35 1 34 sylan φ x . F x . F x
36 35 ralrimiva φ x . F x . F x
37 ss2iun x . F x . F x x . F x x . F x
38 36 37 syl φ x . F x x . F x
39 ioof . : * × * 𝒫
40 ffn . : * × * 𝒫 . Fn * × *
41 39 40 ax-mp . Fn * × *
42 inss2 2 2
43 rexpssxrxp 2 * × *
44 42 43 sstri 2 * × *
45 fss F : 2 2 * × * F : * × *
46 1 44 45 sylancl φ F : * × *
47 fnfco . Fn * × * F : * × * . F Fn
48 41 46 47 sylancr φ . F Fn
49 fniunfv . F Fn x . F x = ran . F
50 48 49 syl φ x . F x = ran . F
51 iccf . : * × * 𝒫 *
52 ffn . : * × * 𝒫 * . Fn * × *
53 51 52 ax-mp . Fn * × *
54 fnfco . Fn * × * F : * × * . F Fn
55 53 46 54 sylancr φ . F Fn
56 fniunfv . F Fn x . F x = ran . F
57 55 56 syl φ x . F x = ran . F
58 38 50 57 3sstr3d φ ran . F ran . F
59 ovolss ran . F ran . F ran . F vol * ran . F vol * ran . F
60 58 5 59 syl2anc φ vol * ran . F vol * ran . F
61 19 60 eqbrtrrd φ sup ran S * < vol * ran . F
62 7 15 18 61 xrletrid φ vol * ran . F = sup ran S * <