Metamath Proof Explorer


Theorem uniimadom

Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of TakeutiZaring p. 99. (Contributed by NM, 25-Mar-2006)

Ref Expression
Hypotheses uniimadom.1 A V
uniimadom.2 B V
Assertion uniimadom Fun F x A F x B F A A × B

Proof

Step Hyp Ref Expression
1 uniimadom.1 A V
2 uniimadom.2 B V
3 1 funimaex Fun F F A V
4 3 adantr Fun F x A F x B F A V
5 fvelima Fun F y F A x A F x = y
6 5 ex Fun F y F A x A F x = y
7 breq1 F x = y F x B y B
8 7 biimpd F x = y F x B y B
9 8 reximi x A F x = y x A F x B y B
10 r19.36v x A F x B y B x A F x B y B
11 9 10 syl x A F x = y x A F x B y B
12 6 11 syl6 Fun F y F A x A F x B y B
13 12 com23 Fun F x A F x B y F A y B
14 13 imp Fun F x A F x B y F A y B
15 14 ralrimiv Fun F x A F x B y F A y B
16 unidom F A V y F A y B F A F A × B
17 4 15 16 syl2anc Fun F x A F x B F A F A × B
18 imadomg A V Fun F F A A
19 1 18 ax-mp Fun F F A A
20 2 xpdom1 F A A F A × B A × B
21 19 20 syl Fun F F A × B A × B
22 21 adantr Fun F x A F x B F A × B A × B
23 domtr F A F A × B F A × B A × B F A A × B
24 17 22 23 syl2anc Fun F x A F x B F A A × B