Metamath Proof Explorer


Theorem uniimadomf

Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of TakeutiZaring p. 99. This version of uniimadom uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006)

Ref Expression
Hypotheses uniimadomf.1 _ x F
uniimadomf.2 A V
uniimadomf.3 B V
Assertion uniimadomf Fun F x A F x B F A A × B

Proof

Step Hyp Ref Expression
1 uniimadomf.1 _ x F
2 uniimadomf.2 A V
3 uniimadomf.3 B V
4 nfv z F x B
5 nfcv _ x z
6 1 5 nffv _ x F z
7 nfcv _ x
8 nfcv _ x B
9 6 7 8 nfbr x F z B
10 fveq2 x = z F x = F z
11 10 breq1d x = z F x B F z B
12 4 9 11 cbvralw x A F x B z A F z B
13 2 3 uniimadom Fun F z A F z B F A A × B
14 12 13 sylan2b Fun F x A F x B F A A × B