Metamath Proof Explorer


Theorem uniinqs

Description: Class union distributes over the intersection of two subclasses of a quotient space. Compare uniin . (Contributed by FL, 25-May-2007) (Proof shortened by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypothesis uniinqs.1 R Er X
Assertion uniinqs B A / R C A / R B C = B C

Proof

Step Hyp Ref Expression
1 uniinqs.1 R Er X
2 uniin B C B C
3 2 a1i B A / R C A / R B C B C
4 eluni2 x B b B x b
5 eluni2 x C c C x c
6 4 5 anbi12i x B x C b B x b c C x c
7 elin x B C x B x C
8 reeanv b B c C x b x c b B x b c C x c
9 6 7 8 3bitr4i x B C b B c C x b x c
10 simp3l B A / R C A / R b B c C x b x c x b
11 simp2l B A / R C A / R b B c C x b x c b B
12 inelcm x b x c b c
13 12 3ad2ant3 B A / R C A / R b B c C x b x c b c
14 1 a1i B A / R C A / R b B c C x b x c R Er X
15 simp1l B A / R C A / R b B c C x b x c B A / R
16 15 11 sseldd B A / R C A / R b B c C x b x c b A / R
17 simp1r B A / R C A / R b B c C x b x c C A / R
18 simp2r B A / R C A / R b B c C x b x c c C
19 17 18 sseldd B A / R C A / R b B c C x b x c c A / R
20 14 16 19 qsdisj B A / R C A / R b B c C x b x c b = c b c =
21 20 ord B A / R C A / R b B c C x b x c ¬ b = c b c =
22 21 necon1ad B A / R C A / R b B c C x b x c b c b = c
23 13 22 mpd B A / R C A / R b B c C x b x c b = c
24 23 18 eqeltrd B A / R C A / R b B c C x b x c b C
25 11 24 elind B A / R C A / R b B c C x b x c b B C
26 elunii x b b B C x B C
27 10 25 26 syl2anc B A / R C A / R b B c C x b x c x B C
28 27 3expia B A / R C A / R b B c C x b x c x B C
29 28 rexlimdvva B A / R C A / R b B c C x b x c x B C
30 9 29 syl5bi B A / R C A / R x B C x B C
31 30 ssrdv B A / R C A / R B C B C
32 3 31 eqssd B A / R C A / R B C = B C