Metamath Proof Explorer


Theorem uniintab

Description: The union and the intersection of a class abstraction are equal exactly when there is a unique satisfying value of ph ( x ) . (Contributed by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion uniintab ∃! x φ x | φ = x | φ

Proof

Step Hyp Ref Expression
1 euabsn2 ∃! x φ y x | φ = y
2 uniintsn x | φ = x | φ y x | φ = y
3 1 2 bitr4i ∃! x φ x | φ = x | φ