Metamath Proof Explorer


Theorem uniintsn

Description: Two ways to express " A is a singleton". See also en1 , en1b , card1 , and eusn . (Contributed by NM, 2-Aug-2010)

Ref Expression
Assertion uniintsn A = A x A = x

Proof

Step Hyp Ref Expression
1 vn0 V
2 inteq A = A =
3 int0 = V
4 2 3 eqtrdi A = A = V
5 4 adantl A = A A = A = V
6 unieq A = A =
7 uni0 =
8 6 7 eqtrdi A = A =
9 eqeq1 A = A A = A =
10 8 9 syl5ib A = A A = A =
11 10 imp A = A A = A =
12 5 11 eqtr3d A = A A = V =
13 12 ex A = A A = V =
14 13 necon3d A = A V A
15 1 14 mpi A = A A
16 n0 A x x A
17 15 16 sylib A = A x x A
18 vex x V
19 vex y V
20 18 19 prss x A y A x y A
21 uniss x y A x y A
22 21 adantl A = A x y A x y A
23 simpl A = A x y A A = A
24 22 23 sseqtrd A = A x y A x y A
25 intss x y A A x y
26 25 adantl A = A x y A A x y
27 24 26 sstrd A = A x y A x y x y
28 18 19 unipr x y = x y
29 18 19 intpr x y = x y
30 27 28 29 3sstr3g A = A x y A x y x y
31 inss1 x y x
32 ssun1 x x y
33 31 32 sstri x y x y
34 eqss x y = x y x y x y x y x y
35 uneqin x y = x y x = y
36 34 35 bitr3i x y x y x y x y x = y
37 30 33 36 sylanblc A = A x y A x = y
38 37 ex A = A x y A x = y
39 20 38 syl5bi A = A x A y A x = y
40 39 alrimivv A = A x y x A y A x = y
41 17 40 jca A = A x x A x y x A y A x = y
42 euabsn ∃! x x A x x | x A = x
43 eleq1w x = y x A y A
44 43 eu4 ∃! x x A x x A x y x A y A x = y
45 abid2 x | x A = A
46 45 eqeq1i x | x A = x A = x
47 46 exbii x x | x A = x x A = x
48 42 44 47 3bitr3i x x A x y x A y A x = y x A = x
49 41 48 sylib A = A x A = x
50 18 unisn x = x
51 unieq A = x A = x
52 inteq A = x A = x
53 18 intsn x = x
54 52 53 eqtrdi A = x A = x
55 50 51 54 3eqtr4a A = x A = A
56 55 exlimiv x A = x A = A
57 49 56 impbii A = A x A = x