Step |
Hyp |
Ref |
Expression |
1 |
|
vn0 |
|
2 |
|
inteq |
|
3 |
|
int0 |
|
4 |
2 3
|
eqtrdi |
|
5 |
4
|
adantl |
|
6 |
|
unieq |
|
7 |
|
uni0 |
|
8 |
6 7
|
eqtrdi |
|
9 |
|
eqeq1 |
|
10 |
8 9
|
syl5ib |
|
11 |
10
|
imp |
|
12 |
5 11
|
eqtr3d |
|
13 |
12
|
ex |
|
14 |
13
|
necon3d |
|
15 |
1 14
|
mpi |
|
16 |
|
n0 |
|
17 |
15 16
|
sylib |
|
18 |
|
vex |
|
19 |
|
vex |
|
20 |
18 19
|
prss |
|
21 |
|
uniss |
|
22 |
21
|
adantl |
|
23 |
|
simpl |
|
24 |
22 23
|
sseqtrd |
|
25 |
|
intss |
|
26 |
25
|
adantl |
|
27 |
24 26
|
sstrd |
|
28 |
18 19
|
unipr |
|
29 |
18 19
|
intpr |
|
30 |
27 28 29
|
3sstr3g |
|
31 |
|
inss1 |
|
32 |
|
ssun1 |
|
33 |
31 32
|
sstri |
|
34 |
|
eqss |
|
35 |
|
uneqin |
|
36 |
34 35
|
bitr3i |
|
37 |
30 33 36
|
sylanblc |
|
38 |
37
|
ex |
|
39 |
20 38
|
syl5bi |
|
40 |
39
|
alrimivv |
|
41 |
17 40
|
jca |
|
42 |
|
euabsn |
|
43 |
|
eleq1w |
|
44 |
43
|
eu4 |
|
45 |
|
abid2 |
|
46 |
45
|
eqeq1i |
|
47 |
46
|
exbii |
|
48 |
42 44 47
|
3bitr3i |
|
49 |
41 48
|
sylib |
|
50 |
18
|
unisn |
|
51 |
|
unieq |
|
52 |
|
inteq |
|
53 |
18
|
intsn |
|
54 |
52 53
|
eqtrdi |
|
55 |
50 51 54
|
3eqtr4a |
|
56 |
55
|
exlimiv |
|
57 |
49 56
|
impbii |
|