Metamath Proof Explorer


Theorem uniioombllem1

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypotheses uniioombl.1 φ F : 2
uniioombl.2 φ Disj x . F x
uniioombl.3 S = seq 1 + abs F
uniioombl.a A = ran . F
uniioombl.e φ vol * E
uniioombl.c φ C +
uniioombl.g φ G : 2
uniioombl.s φ E ran . G
uniioombl.t T = seq 1 + abs G
uniioombl.v φ sup ran T * < vol * E + C
Assertion uniioombllem1 φ sup ran T * <

Proof

Step Hyp Ref Expression
1 uniioombl.1 φ F : 2
2 uniioombl.2 φ Disj x . F x
3 uniioombl.3 S = seq 1 + abs F
4 uniioombl.a A = ran . F
5 uniioombl.e φ vol * E
6 uniioombl.c φ C +
7 uniioombl.g φ G : 2
8 uniioombl.s φ E ran . G
9 uniioombl.t T = seq 1 + abs G
10 uniioombl.v φ sup ran T * < vol * E + C
11 eqid abs G = abs G
12 11 9 ovolsf G : 2 T : 0 +∞
13 7 12 syl φ T : 0 +∞
14 13 frnd φ ran T 0 +∞
15 rge0ssre 0 +∞
16 14 15 sstrdi φ ran T
17 1nn 1
18 13 fdmd φ dom T =
19 17 18 eleqtrrid φ 1 dom T
20 19 ne0d φ dom T
21 dm0rn0 dom T = ran T =
22 21 necon3bii dom T ran T
23 20 22 sylib φ ran T
24 icossxr 0 +∞ *
25 14 24 sstrdi φ ran T *
26 supxrcl ran T * sup ran T * < *
27 25 26 syl φ sup ran T * < *
28 6 rpred φ C
29 5 28 readdcld φ vol * E + C
30 29 rexrd φ vol * E + C *
31 pnfxr +∞ *
32 31 a1i φ +∞ *
33 29 ltpnfd φ vol * E + C < +∞
34 27 30 32 10 33 xrlelttrd φ sup ran T * < < +∞
35 supxrbnd ran T ran T sup ran T * < < +∞ sup ran T * <
36 16 23 34 35 syl3anc φ sup ran T * <