Metamath Proof Explorer


Theorem uniioombllem3a

Description: Lemma for uniioombl . (Contributed by Mario Carneiro, 8-May-2015)

Ref Expression
Hypotheses uniioombl.1 φ F : 2
uniioombl.2 φ Disj x . F x
uniioombl.3 S = seq 1 + abs F
uniioombl.a A = ran . F
uniioombl.e φ vol * E
uniioombl.c φ C +
uniioombl.g φ G : 2
uniioombl.s φ E ran . G
uniioombl.t T = seq 1 + abs G
uniioombl.v φ sup ran T * < vol * E + C
uniioombl.m φ M
uniioombl.m2 φ T M sup ran T * < < C
uniioombl.k K = . G 1 M
Assertion uniioombllem3a φ K = j = 1 M . G j vol * K

Proof

Step Hyp Ref Expression
1 uniioombl.1 φ F : 2
2 uniioombl.2 φ Disj x . F x
3 uniioombl.3 S = seq 1 + abs F
4 uniioombl.a A = ran . F
5 uniioombl.e φ vol * E
6 uniioombl.c φ C +
7 uniioombl.g φ G : 2
8 uniioombl.s φ E ran . G
9 uniioombl.t T = seq 1 + abs G
10 uniioombl.v φ sup ran T * < vol * E + C
11 uniioombl.m φ M
12 uniioombl.m2 φ T M sup ran T * < < C
13 uniioombl.k K = . G 1 M
14 ioof . : * × * 𝒫
15 inss2 2 2
16 rexpssxrxp 2 * × *
17 15 16 sstri 2 * × *
18 fss G : 2 2 * × * G : * × *
19 7 17 18 sylancl φ G : * × *
20 fco . : * × * 𝒫 G : * × * . G : 𝒫
21 14 19 20 sylancr φ . G : 𝒫
22 ffun . G : 𝒫 Fun . G
23 funiunfv Fun . G j = 1 M . G j = . G 1 M
24 21 22 23 3syl φ j = 1 M . G j = . G 1 M
25 elfznn j 1 M j
26 fvco3 G : 2 j . G j = . G j
27 7 25 26 syl2an φ j 1 M . G j = . G j
28 27 iuneq2dv φ j = 1 M . G j = j = 1 M . G j
29 24 28 eqtr3d φ . G 1 M = j = 1 M . G j
30 13 29 eqtrid φ K = j = 1 M . G j
31 ffvelrn G : 2 j G j 2
32 7 25 31 syl2an φ j 1 M G j 2
33 32 elin2d φ j 1 M G j 2
34 1st2nd2 G j 2 G j = 1 st G j 2 nd G j
35 33 34 syl φ j 1 M G j = 1 st G j 2 nd G j
36 35 fveq2d φ j 1 M . G j = . 1 st G j 2 nd G j
37 df-ov 1 st G j 2 nd G j = . 1 st G j 2 nd G j
38 36 37 eqtr4di φ j 1 M . G j = 1 st G j 2 nd G j
39 ioossre 1 st G j 2 nd G j
40 38 39 eqsstrdi φ j 1 M . G j
41 40 ralrimiva φ j 1 M . G j
42 iunss j = 1 M . G j j 1 M . G j
43 41 42 sylibr φ j = 1 M . G j
44 30 43 eqsstrd φ K
45 fzfid φ 1 M Fin
46 38 fveq2d φ j 1 M vol * . G j = vol * 1 st G j 2 nd G j
47 ovolfcl G : 2 j 1 st G j 2 nd G j 1 st G j 2 nd G j
48 7 25 47 syl2an φ j 1 M 1 st G j 2 nd G j 1 st G j 2 nd G j
49 ovolioo 1 st G j 2 nd G j 1 st G j 2 nd G j vol * 1 st G j 2 nd G j = 2 nd G j 1 st G j
50 48 49 syl φ j 1 M vol * 1 st G j 2 nd G j = 2 nd G j 1 st G j
51 46 50 eqtrd φ j 1 M vol * . G j = 2 nd G j 1 st G j
52 48 simp2d φ j 1 M 2 nd G j
53 48 simp1d φ j 1 M 1 st G j
54 52 53 resubcld φ j 1 M 2 nd G j 1 st G j
55 51 54 eqeltrd φ j 1 M vol * . G j
56 45 55 fsumrecl φ j = 1 M vol * . G j
57 30 fveq2d φ vol * K = vol * j = 1 M . G j
58 40 55 jca φ j 1 M . G j vol * . G j
59 58 ralrimiva φ j 1 M . G j vol * . G j
60 ovolfiniun 1 M Fin j 1 M . G j vol * . G j vol * j = 1 M . G j j = 1 M vol * . G j
61 45 59 60 syl2anc φ vol * j = 1 M . G j j = 1 M vol * . G j
62 57 61 eqbrtrd φ vol * K j = 1 M vol * . G j
63 ovollecl K j = 1 M vol * . G j vol * K j = 1 M vol * . G j vol * K
64 44 56 62 63 syl3anc φ vol * K
65 30 64 jca φ K = j = 1 M . G j vol * K