Metamath Proof Explorer


Theorem uniiun

Description: Class union in terms of indexed union. Definition in Stoll p. 43. (Contributed by NM, 28-Jun-1998)

Ref Expression
Assertion uniiun A = x A x

Proof

Step Hyp Ref Expression
1 dfuni2 A = y | x A y x
2 df-iun x A x = y | x A y x
3 1 2 eqtr4i A = x A x