Metamath Proof Explorer


Theorem uniixp

Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion uniixp x A B A × x A B

Proof

Step Hyp Ref Expression
1 ixpf f x A B f : A x A B
2 fssxp f : A x A B f A × x A B
3 1 2 syl f x A B f A × x A B
4 velpw f 𝒫 A × x A B f A × x A B
5 3 4 sylibr f x A B f 𝒫 A × x A B
6 5 ssriv x A B 𝒫 A × x A B
7 sspwuni x A B 𝒫 A × x A B x A B A × x A B
8 6 7 mpbi x A B A × x A B