Metamath Proof Explorer


Theorem unilbss

Description: Superclass of the greatest lower bound. A dual statement of ssintub . (Contributed by Zhi Wang, 29-Sep-2024)

Ref Expression
Assertion unilbss x B | x A A

Proof

Step Hyp Ref Expression
1 unissb x B | x A A y x B | x A y A
2 sseq1 x = y x A y A
3 2 elrab y x B | x A y B y A
4 3 simprbi y x B | x A y A
5 1 4 mprgbir x B | x A A