Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
unima
Next ⟩
fvi
Metamath Proof Explorer
Ascii
Unicode
Theorem
unima
Description:
Image of a union.
(Contributed by
Glauco Siliprandi
, 11-Dec-2019)
Ref
Expression
Assertion
unima
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
F
B
∪
C
=
F
B
∪
F
C
Proof
Step
Hyp
Ref
Expression
1
simp1
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
F
Fn
A
2
simpl
⊢
B
⊆
A
∧
C
⊆
A
→
B
⊆
A
3
simpr
⊢
B
⊆
A
∧
C
⊆
A
→
C
⊆
A
4
2
3
unssd
⊢
B
⊆
A
∧
C
⊆
A
→
B
∪
C
⊆
A
5
4
3adant1
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
B
∪
C
⊆
A
6
1
5
fvelimabd
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
y
∈
F
B
∪
C
↔
∃
x
∈
B
∪
C
F
⁡
x
=
y
7
rexun
⊢
∃
x
∈
B
∪
C
F
⁡
x
=
y
↔
∃
x
∈
B
F
⁡
x
=
y
∨
∃
x
∈
C
F
⁡
x
=
y
8
6
7
bitrdi
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
y
∈
F
B
∪
C
↔
∃
x
∈
B
F
⁡
x
=
y
∨
∃
x
∈
C
F
⁡
x
=
y
9
fvelimab
⊢
F
Fn
A
∧
B
⊆
A
→
y
∈
F
B
↔
∃
x
∈
B
F
⁡
x
=
y
10
9
3adant3
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
y
∈
F
B
↔
∃
x
∈
B
F
⁡
x
=
y
11
fvelimab
⊢
F
Fn
A
∧
C
⊆
A
→
y
∈
F
C
↔
∃
x
∈
C
F
⁡
x
=
y
12
11
3adant2
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
y
∈
F
C
↔
∃
x
∈
C
F
⁡
x
=
y
13
10
12
orbi12d
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
y
∈
F
B
∨
y
∈
F
C
↔
∃
x
∈
B
F
⁡
x
=
y
∨
∃
x
∈
C
F
⁡
x
=
y
14
8
13
bitr4d
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
y
∈
F
B
∪
C
↔
y
∈
F
B
∨
y
∈
F
C
15
elun
⊢
y
∈
F
B
∪
F
C
↔
y
∈
F
B
∨
y
∈
F
C
16
14
15
bitr4di
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
y
∈
F
B
∪
C
↔
y
∈
F
B
∪
F
C
17
16
eqrdv
⊢
F
Fn
A
∧
B
⊆
A
∧
C
⊆
A
→
F
B
∪
C
=
F
B
∪
F
C