Metamath Proof Explorer


Theorem unimopn

Description: The union of a collection of open sets of a metric space is open. Theorem T2 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1 J = MetOpen D
Assertion unimopn D ∞Met X A J A J

Proof

Step Hyp Ref Expression
1 mopni.1 J = MetOpen D
2 1 mopntop D ∞Met X J Top
3 uniopn J Top A J A J
4 2 3 sylan D ∞Met X A J A J