Metamath Proof Explorer
Description: The union of an ordered pair. Theorem 65 of Suppes p. 39.
(Contributed by NM, 17-Aug-2004) (Revised by Mario Carneiro, 26-Apr-2015)
|
|
Ref |
Expression |
|
Hypotheses |
opthw.1 |
|
|
|
opthw.2 |
|
|
Assertion |
uniop |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opthw.1 |
|
| 2 |
|
opthw.2 |
|
| 3 |
1 2
|
dfop |
|
| 4 |
3
|
unieqi |
|
| 5 |
|
snex |
|
| 6 |
|
prex |
|
| 7 |
5 6
|
unipr |
|
| 8 |
|
snsspr1 |
|
| 9 |
|
ssequn1 |
|
| 10 |
8 9
|
mpbi |
|
| 11 |
4 7 10
|
3eqtri |
|