Metamath Proof Explorer


Theorem uniop

Description: The union of an ordered pair. Theorem 65 of Suppes p. 39. (Contributed by NM, 17-Aug-2004) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opthw.1 A V
opthw.2 B V
Assertion uniop A B = A B

Proof

Step Hyp Ref Expression
1 opthw.1 A V
2 opthw.2 B V
3 1 2 dfop A B = A A B
4 3 unieqi A B = A A B
5 snex A V
6 prex A B V
7 5 6 unipr A A B = A A B
8 snsspr1 A A B
9 ssequn1 A A B A A B = A B
10 8 9 mpbi A A B = A B
11 4 7 10 3eqtri A B = A B