Metamath Proof Explorer


Theorem uniopn

Description: The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006)

Ref Expression
Assertion uniopn J Top A J A J

Proof

Step Hyp Ref Expression
1 istopg J Top J Top x x J x J x J y J x y J
2 1 ibi J Top x x J x J x J y J x y J
3 2 simpld J Top x x J x J
4 elpw2g J Top A 𝒫 J A J
5 4 biimpar J Top A J A 𝒫 J
6 sseq1 x = A x J A J
7 unieq x = A x = A
8 7 eleq1d x = A x J A J
9 6 8 imbi12d x = A x J x J A J A J
10 9 spcgv A 𝒫 J x x J x J A J A J
11 5 10 syl J Top A J x x J x J A J A J
12 11 com23 J Top A J A J x x J x J A J
13 12 ex J Top A J A J x x J x J A J
14 13 pm2.43d J Top A J x x J x J A J
15 3 14 mpid J Top A J A J
16 15 imp J Top A J A J