Metamath Proof Explorer


Theorem uniprgOLD

Description: Obsolete version of unipr as of 1-Sep-2024. (Contributed by NM, 25-Aug-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion uniprgOLD A V B W A B = A B

Proof

Step Hyp Ref Expression
1 preq1 x = A x y = A y
2 1 unieqd x = A x y = A y
3 uneq1 x = A x y = A y
4 2 3 eqeq12d x = A x y = x y A y = A y
5 preq2 y = B A y = A B
6 5 unieqd y = B A y = A B
7 uneq2 y = B A y = A B
8 6 7 eqeq12d y = B A y = A y A B = A B
9 vex x V
10 vex y V
11 9 10 unipr x y = x y
12 4 8 11 vtocl2g A V B W A B = A B