Metamath Proof Explorer


Theorem unipw

Description: A class equals the union of its power class. Exercise 6(a) of Enderton p. 38. (Contributed by NM, 14-Oct-1996) (Proof shortened by Alan Sare, 28-Dec-2008)

Ref Expression
Assertion unipw 𝒫 A = A

Proof

Step Hyp Ref Expression
1 eluni x 𝒫 A y x y y 𝒫 A
2 elelpwi x y y 𝒫 A x A
3 2 exlimiv y x y y 𝒫 A x A
4 1 3 sylbi x 𝒫 A x A
5 vsnid x x
6 snelpwi x A x 𝒫 A
7 elunii x x x 𝒫 A x 𝒫 A
8 5 6 7 sylancr x A x 𝒫 A
9 4 8 impbii x 𝒫 A x A
10 9 eqriv 𝒫 A = A