Description: A class equals the union of its power class. Exercise 6(a) of Enderton p. 38. (Contributed by NM, 14-Oct-1996) (Proof shortened by Alan Sare, 28-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unipw |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni | ||
| 2 | elelpwi | ||
| 3 | 2 | exlimiv | |
| 4 | 1 3 | sylbi | |
| 5 | vsnid | ||
| 6 | snelpwi | ||
| 7 | elunii | ||
| 8 | 5 6 7 | sylancr | |
| 9 | 4 8 | impbii | |
| 10 | 9 | eqriv |