Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
uniqs
Next ⟩
qsss
Metamath Proof Explorer
Ascii
Unicode
Theorem
uniqs
Description:
The union of a quotient set.
(Contributed by
NM
, 9-Dec-2008)
Ref
Expression
Assertion
uniqs
⊢
R
∈
V
→
⋃
A
/
R
=
R
A
Proof
Step
Hyp
Ref
Expression
1
ecexg
⊢
R
∈
V
→
x
R
∈
V
2
1
ralrimivw
⊢
R
∈
V
→
∀
x
∈
A
x
R
∈
V
3
dfiun2g
⊢
∀
x
∈
A
x
R
∈
V
→
⋃
x
∈
A
x
R
=
⋃
y
|
∃
x
∈
A
y
=
x
R
4
2
3
syl
⊢
R
∈
V
→
⋃
x
∈
A
x
R
=
⋃
y
|
∃
x
∈
A
y
=
x
R
5
4
eqcomd
⊢
R
∈
V
→
⋃
y
|
∃
x
∈
A
y
=
x
R
=
⋃
x
∈
A
x
R
6
df-qs
⊢
A
/
R
=
y
|
∃
x
∈
A
y
=
x
R
7
6
unieqi
⊢
⋃
A
/
R
=
⋃
y
|
∃
x
∈
A
y
=
x
R
8
df-ec
⊢
x
R
=
R
x
9
8
a1i
⊢
x
∈
A
→
x
R
=
R
x
10
9
iuneq2i
⊢
⋃
x
∈
A
x
R
=
⋃
x
∈
A
R
x
11
imaiun
⊢
R
⋃
x
∈
A
x
=
⋃
x
∈
A
R
x
12
iunid
⊢
⋃
x
∈
A
x
=
A
13
12
imaeq2i
⊢
R
⋃
x
∈
A
x
=
R
A
14
10
11
13
3eqtr2ri
⊢
R
A
=
⋃
x
∈
A
x
R
15
5
7
14
3eqtr4g
⊢
R
∈
V
→
⋃
A
/
R
=
R
A