Metamath Proof Explorer


Theorem uniqs

Description: The union of a quotient set. (Contributed by NM, 9-Dec-2008)

Ref Expression
Assertion uniqs R V A / R = R A

Proof

Step Hyp Ref Expression
1 ecexg R V x R V
2 1 ralrimivw R V x A x R V
3 dfiun2g x A x R V x A x R = y | x A y = x R
4 2 3 syl R V x A x R = y | x A y = x R
5 4 eqcomd R V y | x A y = x R = x A x R
6 df-qs A / R = y | x A y = x R
7 6 unieqi A / R = y | x A y = x R
8 df-ec x R = R x
9 8 a1i x A x R = R x
10 9 iuneq2i x A x R = x A R x
11 imaiun R x A x = x A R x
12 iunid x A x = A
13 12 imaeq2i R x A x = R A
14 10 11 13 3eqtr2ri R A = x A x R
15 5 7 14 3eqtr4g R V A / R = R A