Metamath Proof Explorer


Theorem uniqs2

Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses qsss.1 φ R Er A
qsss.2 φ R V
Assertion uniqs2 φ A / R = A

Proof

Step Hyp Ref Expression
1 qsss.1 φ R Er A
2 qsss.2 φ R V
3 uniqs R V A / R = R A
4 2 3 syl φ A / R = R A
5 erdm R Er A dom R = A
6 1 5 syl φ dom R = A
7 6 imaeq2d φ R dom R = R A
8 4 7 eqtr4d φ A / R = R dom R
9 imadmrn R dom R = ran R
10 8 9 eqtrdi φ A / R = ran R
11 errn R Er A ran R = A
12 1 11 syl φ ran R = A
13 10 12 eqtrd φ A / R = A