Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
uniqs2
Next ⟩
snec
Metamath Proof Explorer
Ascii
Unicode
Theorem
uniqs2
Description:
The union of a quotient set.
(Contributed by
Mario Carneiro
, 11-Jul-2014)
Ref
Expression
Hypotheses
qsss.1
⊢
φ
→
R
Er
A
qsss.2
⊢
φ
→
R
∈
V
Assertion
uniqs2
⊢
φ
→
⋃
A
/
R
=
A
Proof
Step
Hyp
Ref
Expression
1
qsss.1
⊢
φ
→
R
Er
A
2
qsss.2
⊢
φ
→
R
∈
V
3
uniqs
⊢
R
∈
V
→
⋃
A
/
R
=
R
A
4
2
3
syl
⊢
φ
→
⋃
A
/
R
=
R
A
5
erdm
⊢
R
Er
A
→
dom
⁡
R
=
A
6
1
5
syl
⊢
φ
→
dom
⁡
R
=
A
7
6
imaeq2d
⊢
φ
→
R
dom
⁡
R
=
R
A
8
4
7
eqtr4d
⊢
φ
→
⋃
A
/
R
=
R
dom
⁡
R
9
imadmrn
⊢
R
dom
⁡
R
=
ran
⁡
R
10
8
9
eqtrdi
⊢
φ
→
⋃
A
/
R
=
ran
⁡
R
11
errn
⊢
R
Er
A
→
ran
⁡
R
=
A
12
1
11
syl
⊢
φ
→
ran
⁡
R
=
A
13
10
12
eqtrd
⊢
φ
→
⋃
A
/
R
=
A