Metamath Proof Explorer


Theorem unirestss

Description: The union of an elementwise intersection is a subset of the underlying set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses unirestss.1 φ A V
unirestss.2 φ B W
Assertion unirestss φ A 𝑡 B A

Proof

Step Hyp Ref Expression
1 unirestss.1 φ A V
2 unirestss.2 φ B W
3 1 2 restuni6 φ A 𝑡 B = A B
4 inss1 A B A
5 3 4 eqsstrdi φ A 𝑡 B A