Metamath Proof Explorer


Theorem unirnffid

Description: The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses unirnffid.1 φ F : T Fin
unirnffid.2 φ T Fin
Assertion unirnffid φ ran F Fin

Proof

Step Hyp Ref Expression
1 unirnffid.1 φ F : T Fin
2 unirnffid.2 φ T Fin
3 1 ffnd φ F Fn T
4 fnfi F Fn T T Fin F Fin
5 3 2 4 syl2anc φ F Fin
6 rnfi F Fin ran F Fin
7 5 6 syl φ ran F Fin
8 1 frnd φ ran F Fin
9 unifi ran F Fin ran F Fin ran F Fin
10 7 8 9 syl2anc φ ran F Fin