Metamath Proof Explorer


Theorem unirnioo

Description: The union of the range of the open interval function. (Contributed by NM, 7-May-2007) (Revised by Mario Carneiro, 30-Jan-2014)

Ref Expression
Assertion unirnioo = ran .

Proof

Step Hyp Ref Expression
1 ioomax −∞ +∞ =
2 ioof . : * × * 𝒫
3 ffn . : * × * 𝒫 . Fn * × *
4 2 3 ax-mp . Fn * × *
5 mnfxr −∞ *
6 pnfxr +∞ *
7 fnovrn . Fn * × * −∞ * +∞ * −∞ +∞ ran .
8 4 5 6 7 mp3an −∞ +∞ ran .
9 1 8 eqeltrri ran .
10 elssuni ran . ran .
11 9 10 ax-mp ran .
12 frn . : * × * 𝒫 ran . 𝒫
13 2 12 ax-mp ran . 𝒫
14 sspwuni ran . 𝒫 ran .
15 13 14 mpbi ran .
16 11 15 eqssi = ran .