Metamath Proof Explorer


Theorem unirnmap

Description: Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses unirnmap.a φ A V
unirnmap.x φ X B A
Assertion unirnmap φ X ran X A

Proof

Step Hyp Ref Expression
1 unirnmap.a φ A V
2 unirnmap.x φ X B A
3 2 sselda φ g X g B A
4 elmapfn g B A g Fn A
5 3 4 syl φ g X g Fn A
6 simplr φ g X x A g X
7 dffn3 g Fn A g : A ran g
8 5 7 sylib φ g X g : A ran g
9 8 ffvelrnda φ g X x A g x ran g
10 rneq f = g ran f = ran g
11 10 eleq2d f = g g x ran f g x ran g
12 11 rspcev g X g x ran g f X g x ran f
13 6 9 12 syl2anc φ g X x A f X g x ran f
14 eliun g x f X ran f f X g x ran f
15 13 14 sylibr φ g X x A g x f X ran f
16 rnuni ran X = f X ran f
17 15 16 eleqtrrdi φ g X x A g x ran X
18 17 ralrimiva φ g X x A g x ran X
19 5 18 jca φ g X g Fn A x A g x ran X
20 ffnfv g : A ran X g Fn A x A g x ran X
21 19 20 sylibr φ g X g : A ran X
22 ovexd φ B A V
23 22 2 ssexd φ X V
24 23 uniexd φ X V
25 rnexg X V ran X V
26 24 25 syl φ ran X V
27 26 1 elmapd φ g ran X A g : A ran X
28 27 adantr φ g X g ran X A g : A ran X
29 21 28 mpbird φ g X g ran X A
30 29 ralrimiva φ g X g ran X A
31 dfss3 X ran X A g X g ran X A
32 30 31 sylibr φ X ran X A