Metamath Proof Explorer


Theorem unirnmapsn

Description: Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses unirnmapsn.A φ A V
unirnmapsn.b φ B W
unirnmapsn.C C = A
unirnmapsn.x φ X B C
Assertion unirnmapsn φ X = ran X C

Proof

Step Hyp Ref Expression
1 unirnmapsn.A φ A V
2 unirnmapsn.b φ B W
3 unirnmapsn.C C = A
4 unirnmapsn.x φ X B C
5 snex A V
6 3 5 eqeltri C V
7 6 a1i φ C V
8 7 4 unirnmap φ X ran X C
9 simpl φ g ran X C φ
10 equid g = g
11 rnuni ran X = f X ran f
12 11 oveq1i ran X C = f X ran f C
13 10 12 eleq12i g ran X C g f X ran f C
14 13 biimpi g ran X C g f X ran f C
15 14 adantl φ g ran X C g f X ran f C
16 ovexd φ B C V
17 16 4 ssexd φ X V
18 rnexg f X ran f V
19 18 rgen f X ran f V
20 19 a1i φ f X ran f V
21 iunexg X V f X ran f V f X ran f V
22 17 20 21 syl2anc φ f X ran f V
23 22 7 elmapd φ g f X ran f C g : C f X ran f
24 23 biimpa φ g f X ran f C g : C f X ran f
25 snidg A V A A
26 1 25 syl φ A A
27 26 3 eleqtrrdi φ A C
28 27 adantr φ g f X ran f C A C
29 24 28 ffvelrnd φ g f X ran f C g A f X ran f
30 eliun g A f X ran f f X g A ran f
31 29 30 sylib φ g f X ran f C f X g A ran f
32 9 15 31 syl2anc φ g ran X C f X g A ran f
33 elmapfn g ran X C g Fn C
34 33 adantl φ g ran X C g Fn C
35 simp3 φ f X g A ran f g A ran f
36 1 3ad2ant1 φ f X g A ran f A V
37 3 oveq2i B C = B A
38 4 37 sseqtrdi φ X B A
39 38 adantr φ f X X B A
40 simpr φ f X f X
41 39 40 sseldd φ f X f B A
42 2 adantr φ f X B W
43 5 a1i φ f X A V
44 42 43 elmapd φ f X f B A f : A B
45 41 44 mpbid φ f X f : A B
46 45 3adant3 φ f X g A ran f f : A B
47 36 46 rnsnf φ f X g A ran f ran f = f A
48 35 47 eleqtrd φ f X g A ran f g A f A
49 fvex g A V
50 49 elsn g A f A g A = f A
51 48 50 sylib φ f X g A ran f g A = f A
52 51 3adant1r φ g Fn C f X g A ran f g A = f A
53 1 adantr φ g Fn C A V
54 53 3ad2ant1 φ g Fn C f X g A ran f A V
55 simp1r φ g Fn C f X g A ran f g Fn C
56 41 37 eleqtrrdi φ f X f B C
57 elmapfn f B C f Fn C
58 56 57 syl φ f X f Fn C
59 58 adantlr φ g Fn C f X f Fn C
60 59 3adant3 φ g Fn C f X g A ran f f Fn C
61 54 3 55 60 fsneq φ g Fn C f X g A ran f g = f g A = f A
62 52 61 mpbird φ g Fn C f X g A ran f g = f
63 simp2 φ g Fn C f X g A ran f f X
64 62 63 eqeltrd φ g Fn C f X g A ran f g X
65 64 3exp φ g Fn C f X g A ran f g X
66 9 34 65 syl2anc φ g ran X C f X g A ran f g X
67 66 rexlimdv φ g ran X C f X g A ran f g X
68 32 67 mpd φ g ran X C g X
69 8 68 eqelssd φ X = ran X C