Description: Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | unirnmapsn.A | |
|
unirnmapsn.b | |
||
unirnmapsn.C | |
||
unirnmapsn.x | |
||
Assertion | unirnmapsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unirnmapsn.A | |
|
2 | unirnmapsn.b | |
|
3 | unirnmapsn.C | |
|
4 | unirnmapsn.x | |
|
5 | snex | |
|
6 | 3 5 | eqeltri | |
7 | 6 | a1i | |
8 | 7 4 | unirnmap | |
9 | simpl | |
|
10 | equid | |
|
11 | rnuni | |
|
12 | 11 | oveq1i | |
13 | 10 12 | eleq12i | |
14 | 13 | biimpi | |
15 | 14 | adantl | |
16 | ovexd | |
|
17 | 16 4 | ssexd | |
18 | rnexg | |
|
19 | 18 | rgen | |
20 | 19 | a1i | |
21 | iunexg | |
|
22 | 17 20 21 | syl2anc | |
23 | 22 7 | elmapd | |
24 | 23 | biimpa | |
25 | snidg | |
|
26 | 1 25 | syl | |
27 | 26 3 | eleqtrrdi | |
28 | 27 | adantr | |
29 | 24 28 | ffvelcdmd | |
30 | eliun | |
|
31 | 29 30 | sylib | |
32 | 9 15 31 | syl2anc | |
33 | elmapfn | |
|
34 | 33 | adantl | |
35 | simp3 | |
|
36 | 1 | 3ad2ant1 | |
37 | 3 | oveq2i | |
38 | 4 37 | sseqtrdi | |
39 | 38 | adantr | |
40 | simpr | |
|
41 | 39 40 | sseldd | |
42 | 2 | adantr | |
43 | 5 | a1i | |
44 | 42 43 | elmapd | |
45 | 41 44 | mpbid | |
46 | 45 | 3adant3 | |
47 | 36 46 | rnsnf | |
48 | 35 47 | eleqtrd | |
49 | fvex | |
|
50 | 49 | elsn | |
51 | 48 50 | sylib | |
52 | 51 | 3adant1r | |
53 | 1 | adantr | |
54 | 53 | 3ad2ant1 | |
55 | simp1r | |
|
56 | 41 37 | eleqtrrdi | |
57 | elmapfn | |
|
58 | 56 57 | syl | |
59 | 58 | adantlr | |
60 | 59 | 3adant3 | |
61 | 54 3 55 60 | fsneq | |
62 | 52 61 | mpbird | |
63 | simp2 | |
|
64 | 62 63 | eqeltrd | |
65 | 64 | 3exp | |
66 | 9 34 65 | syl2anc | |
67 | 66 | rexlimdv | |
68 | 32 67 | mpd | |
69 | 8 68 | eqelssd | |