Metamath Proof Explorer


Theorem unirnmapsn

Description: Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses unirnmapsn.A φAV
unirnmapsn.b φBW
unirnmapsn.C C=A
unirnmapsn.x φXBC
Assertion unirnmapsn φX=ranXC

Proof

Step Hyp Ref Expression
1 unirnmapsn.A φAV
2 unirnmapsn.b φBW
3 unirnmapsn.C C=A
4 unirnmapsn.x φXBC
5 snex AV
6 3 5 eqeltri CV
7 6 a1i φCV
8 7 4 unirnmap φXranXC
9 simpl φgranXCφ
10 equid g=g
11 rnuni ranX=fXranf
12 11 oveq1i ranXC=fXranfC
13 10 12 eleq12i granXCgfXranfC
14 13 biimpi granXCgfXranfC
15 14 adantl φgranXCgfXranfC
16 ovexd φBCV
17 16 4 ssexd φXV
18 rnexg fXranfV
19 18 rgen fXranfV
20 19 a1i φfXranfV
21 iunexg XVfXranfVfXranfV
22 17 20 21 syl2anc φfXranfV
23 22 7 elmapd φgfXranfCg:CfXranf
24 23 biimpa φgfXranfCg:CfXranf
25 snidg AVAA
26 1 25 syl φAA
27 26 3 eleqtrrdi φAC
28 27 adantr φgfXranfCAC
29 24 28 ffvelcdmd φgfXranfCgAfXranf
30 eliun gAfXranffXgAranf
31 29 30 sylib φgfXranfCfXgAranf
32 9 15 31 syl2anc φgranXCfXgAranf
33 elmapfn granXCgFnC
34 33 adantl φgranXCgFnC
35 simp3 φfXgAranfgAranf
36 1 3ad2ant1 φfXgAranfAV
37 3 oveq2i BC=BA
38 4 37 sseqtrdi φXBA
39 38 adantr φfXXBA
40 simpr φfXfX
41 39 40 sseldd φfXfBA
42 2 adantr φfXBW
43 5 a1i φfXAV
44 42 43 elmapd φfXfBAf:AB
45 41 44 mpbid φfXf:AB
46 45 3adant3 φfXgAranff:AB
47 36 46 rnsnf φfXgAranfranf=fA
48 35 47 eleqtrd φfXgAranfgAfA
49 fvex gAV
50 49 elsn gAfAgA=fA
51 48 50 sylib φfXgAranfgA=fA
52 51 3adant1r φgFnCfXgAranfgA=fA
53 1 adantr φgFnCAV
54 53 3ad2ant1 φgFnCfXgAranfAV
55 simp1r φgFnCfXgAranfgFnC
56 41 37 eleqtrrdi φfXfBC
57 elmapfn fBCfFnC
58 56 57 syl φfXfFnC
59 58 adantlr φgFnCfXfFnC
60 59 3adant3 φgFnCfXgAranffFnC
61 54 3 55 60 fsneq φgFnCfXgAranfg=fgA=fA
62 52 61 mpbird φgFnCfXgAranfg=f
63 simp2 φgFnCfXgAranffX
64 62 63 eqeltrd φgFnCfXgAranfgX
65 64 3exp φgFnCfXgAranfgX
66 9 34 65 syl2anc φgranXCfXgAranfgX
67 66 rexlimdv φgranXCfXgAranfgX
68 32 67 mpd φgranXCgX
69 8 68 eqelssd φX=ranXC