Step |
Hyp |
Ref |
Expression |
1 |
|
unirnmapsn.A |
|
2 |
|
unirnmapsn.b |
|
3 |
|
unirnmapsn.C |
|
4 |
|
unirnmapsn.x |
|
5 |
|
snex |
|
6 |
3 5
|
eqeltri |
|
7 |
6
|
a1i |
|
8 |
7 4
|
unirnmap |
|
9 |
|
simpl |
|
10 |
|
equid |
|
11 |
|
rnuni |
|
12 |
11
|
oveq1i |
|
13 |
10 12
|
eleq12i |
|
14 |
13
|
biimpi |
|
15 |
14
|
adantl |
|
16 |
|
ovexd |
|
17 |
16 4
|
ssexd |
|
18 |
|
rnexg |
|
19 |
18
|
rgen |
|
20 |
19
|
a1i |
|
21 |
|
iunexg |
|
22 |
17 20 21
|
syl2anc |
|
23 |
22 7
|
elmapd |
|
24 |
23
|
biimpa |
|
25 |
|
snidg |
|
26 |
1 25
|
syl |
|
27 |
26 3
|
eleqtrrdi |
|
28 |
27
|
adantr |
|
29 |
24 28
|
ffvelrnd |
|
30 |
|
eliun |
|
31 |
29 30
|
sylib |
|
32 |
9 15 31
|
syl2anc |
|
33 |
|
elmapfn |
|
34 |
33
|
adantl |
|
35 |
|
simp3 |
|
36 |
1
|
3ad2ant1 |
|
37 |
3
|
oveq2i |
|
38 |
4 37
|
sseqtrdi |
|
39 |
38
|
adantr |
|
40 |
|
simpr |
|
41 |
39 40
|
sseldd |
|
42 |
2
|
adantr |
|
43 |
5
|
a1i |
|
44 |
42 43
|
elmapd |
|
45 |
41 44
|
mpbid |
|
46 |
45
|
3adant3 |
|
47 |
36 46
|
rnsnf |
|
48 |
35 47
|
eleqtrd |
|
49 |
|
fvex |
|
50 |
49
|
elsn |
|
51 |
48 50
|
sylib |
|
52 |
51
|
3adant1r |
|
53 |
1
|
adantr |
|
54 |
53
|
3ad2ant1 |
|
55 |
|
simp1r |
|
56 |
41 37
|
eleqtrrdi |
|
57 |
|
elmapfn |
|
58 |
56 57
|
syl |
|
59 |
58
|
adantlr |
|
60 |
59
|
3adant3 |
|
61 |
54 3 55 60
|
fsneq |
|
62 |
52 61
|
mpbird |
|
63 |
|
simp2 |
|
64 |
62 63
|
eqeltrd |
|
65 |
64
|
3exp |
|
66 |
9 34 65
|
syl2anc |
|
67 |
66
|
rexlimdv |
|
68 |
32 67
|
mpd |
|
69 |
8 68
|
eqelssd |
|