Metamath Proof Explorer


Theorem unisn2

Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)

Ref Expression
Assertion unisn2 A A

Proof

Step Hyp Ref Expression
1 unisng A V A = A
2 prid2g A V A A
3 1 2 eqeltrd A V A A
4 snprc ¬ A V A =
5 4 biimpi ¬ A V A =
6 5 unieqd ¬ A V A =
7 uni0 =
8 0ex V
9 8 prid1 A
10 7 9 eqeltri A
11 6 10 eqeltrdi ¬ A V A A
12 3 11 pm2.61i A A