Description: A version of unisn without the A e. _V hypothesis. (Contributed by Stefan Allan, 14-Mar-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisn2 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | unisng | ||
| 2 | prid2g | ||
| 3 | 1 2 | eqeltrd | |
| 4 | snprc | ||
| 5 | 4 | biimpi | |
| 6 | 5 | unieqd | |
| 7 | uni0 | ||
| 8 | 0ex | ||
| 9 | 8 | prid1 | |
| 10 | 7 9 | eqeltri | |
| 11 | 6 10 | eqeltrdi | |
| 12 | 3 11 | pm2.61i |