Metamath Proof Explorer


Theorem uniss2

Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of TakeutiZaring p. 59. See iunss2 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion uniss2 x A y B x y A B

Proof

Step Hyp Ref Expression
1 ssuni x y y B x B
2 1 expcom y B x y x B
3 2 rexlimiv y B x y x B
4 3 ralimi x A y B x y x A x B
5 unissb A B x A x B
6 4 5 sylibr x A y B x y A B