Metamath Proof Explorer


Theorem unissbOLD

Description: Obsolete version of unissb as of 28-Dec-2024. (Contributed by NM, 20-Sep-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion unissbOLD ABxAxB

Proof

Step Hyp Ref Expression
1 eluni yAxyxxA
2 1 imbi1i yAyBxyxxAyB
3 19.23v xyxxAyBxyxxAyB
4 2 3 bitr4i yAyBxyxxAyB
5 4 albii yyAyByxyxxAyB
6 alcom yxyxxAyBxyyxxAyB
7 19.21v yxAyxyBxAyyxyB
8 impexp yxxAyByxxAyB
9 bi2.04 yxxAyBxAyxyB
10 8 9 bitri yxxAyBxAyxyB
11 10 albii yyxxAyByxAyxyB
12 df-ss xByyxyB
13 12 imbi2i xAxBxAyyxyB
14 7 11 13 3bitr4i yyxxAyBxAxB
15 14 albii xyyxxAyBxxAxB
16 6 15 bitri yxyxxAyBxxAxB
17 5 16 bitri yyAyBxxAxB
18 df-ss AByyAyB
19 df-ral xAxBxxAxB
20 17 18 19 3bitr4i ABxAxB