Metamath Proof Explorer


Theorem unitabl

Description: The group of units of a commutative ring is abelian. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses unitmulcl.1 U = Unit R
unitgrp.2 G = mulGrp R 𝑠 U
Assertion unitabl R CRing G Abel

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U = Unit R
2 unitgrp.2 G = mulGrp R 𝑠 U
3 crngring R CRing R Ring
4 1 2 unitgrp R Ring G Grp
5 3 4 syl R CRing G Grp
6 eqid mulGrp R = mulGrp R
7 6 crngmgp R CRing mulGrp R CMnd
8 5 grpmndd R CRing G Mnd
9 2 subcmn mulGrp R CMnd G Mnd G CMnd
10 7 8 9 syl2anc R CRing G CMnd
11 isabl G Abel G Grp G CMnd
12 5 10 11 sylanbrc R CRing G Abel