Metamath Proof Explorer


Theorem unitcl

Description: A unit is an element of the base set. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses unitcl.1 B = Base R
unitcl.2 U = Unit R
Assertion unitcl X U X B

Proof

Step Hyp Ref Expression
1 unitcl.1 B = Base R
2 unitcl.2 U = Unit R
3 eqid 1 R = 1 R
4 eqid r R = r R
5 eqid opp r R = opp r R
6 eqid r opp r R = r opp r R
7 2 3 4 5 6 isunit X U X r R 1 R X r opp r R 1 R
8 7 simplbi X U X r R 1 R
9 1 4 dvdsrcl X r R 1 R X B
10 8 9 syl X U X B