Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
unitcl
Next ⟩
unitss
Metamath Proof Explorer
Ascii
Unicode
Theorem
unitcl
Description:
A unit is an element of the base set.
(Contributed by
Mario Carneiro
, 1-Dec-2014)
Ref
Expression
Hypotheses
unitcl.1
⊢
B
=
Base
R
unitcl.2
⊢
U
=
Unit
⁡
R
Assertion
unitcl
⊢
X
∈
U
→
X
∈
B
Proof
Step
Hyp
Ref
Expression
1
unitcl.1
⊢
B
=
Base
R
2
unitcl.2
⊢
U
=
Unit
⁡
R
3
eqid
⊢
1
R
=
1
R
4
eqid
⊢
∥
r
⁡
R
=
∥
r
⁡
R
5
eqid
⊢
opp
r
⁡
R
=
opp
r
⁡
R
6
eqid
⊢
∥
r
⁡
opp
r
⁡
R
=
∥
r
⁡
opp
r
⁡
R
7
2
3
4
5
6
isunit
⊢
X
∈
U
↔
X
∥
r
⁡
R
1
R
∧
X
∥
r
⁡
opp
r
⁡
R
1
R
8
7
simplbi
⊢
X
∈
U
→
X
∥
r
⁡
R
1
R
9
1
4
dvdsrcl
⊢
X
∥
r
⁡
R
1
R
→
X
∈
B
10
8
9
syl
⊢
X
∈
U
→
X
∈
B