Step |
Hyp |
Ref |
Expression |
1 |
|
elunitrn |
|
2 |
1
|
3ad2ant1 |
|
3 |
|
elunitrn |
|
4 |
3
|
3ad2ant2 |
|
5 |
|
simp3 |
|
6 |
2 4 5
|
redivcld |
|
7 |
6
|
adantr |
|
8 |
|
elunitge0 |
|
9 |
8
|
3ad2ant1 |
|
10 |
|
elunitge0 |
|
11 |
10
|
adantr |
|
12 |
|
0re |
|
13 |
|
ltlen |
|
14 |
12 3 13
|
sylancr |
|
15 |
14
|
biimpar |
|
16 |
15
|
3impb |
|
17 |
16
|
3com23 |
|
18 |
11 17
|
mpd3an3 |
|
19 |
18
|
3adant1 |
|
20 |
|
divge0 |
|
21 |
2 9 4 19 20
|
syl22anc |
|
22 |
21
|
adantr |
|
23 |
|
1red |
|
24 |
|
ledivmul |
|
25 |
2 23 4 19 24
|
syl112anc |
|
26 |
|
ax-1rid |
|
27 |
26
|
breq2d |
|
28 |
4 27
|
syl |
|
29 |
25 28
|
bitr2d |
|
30 |
29
|
biimpa |
|
31 |
7 22 30
|
3jca |
|
32 |
31
|
ex |
|
33 |
|
simp3 |
|
34 |
33 29
|
syl5ibr |
|
35 |
32 34
|
impbid |
|
36 |
|
elicc01 |
|
37 |
35 36
|
bitr4di |
|