Metamath Proof Explorer


Theorem unitdivcld

Description: Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016)

Ref Expression
Assertion unitdivcld A 0 1 B 0 1 B 0 A B A B 0 1

Proof

Step Hyp Ref Expression
1 elunitrn A 0 1 A
2 1 3ad2ant1 A 0 1 B 0 1 B 0 A
3 elunitrn B 0 1 B
4 3 3ad2ant2 A 0 1 B 0 1 B 0 B
5 simp3 A 0 1 B 0 1 B 0 B 0
6 2 4 5 redivcld A 0 1 B 0 1 B 0 A B
7 6 adantr A 0 1 B 0 1 B 0 A B A B
8 elunitge0 A 0 1 0 A
9 8 3ad2ant1 A 0 1 B 0 1 B 0 0 A
10 elunitge0 B 0 1 0 B
11 10 adantr B 0 1 B 0 0 B
12 0re 0
13 ltlen 0 B 0 < B 0 B B 0
14 12 3 13 sylancr B 0 1 0 < B 0 B B 0
15 14 biimpar B 0 1 0 B B 0 0 < B
16 15 3impb B 0 1 0 B B 0 0 < B
17 16 3com23 B 0 1 B 0 0 B 0 < B
18 11 17 mpd3an3 B 0 1 B 0 0 < B
19 18 3adant1 A 0 1 B 0 1 B 0 0 < B
20 divge0 A 0 A B 0 < B 0 A B
21 2 9 4 19 20 syl22anc A 0 1 B 0 1 B 0 0 A B
22 21 adantr A 0 1 B 0 1 B 0 A B 0 A B
23 1red A 0 1 B 0 1 B 0 1
24 ledivmul A 1 B 0 < B A B 1 A B 1
25 2 23 4 19 24 syl112anc A 0 1 B 0 1 B 0 A B 1 A B 1
26 ax-1rid B B 1 = B
27 26 breq2d B A B 1 A B
28 4 27 syl A 0 1 B 0 1 B 0 A B 1 A B
29 25 28 bitr2d A 0 1 B 0 1 B 0 A B A B 1
30 29 biimpa A 0 1 B 0 1 B 0 A B A B 1
31 7 22 30 3jca A 0 1 B 0 1 B 0 A B A B 0 A B A B 1
32 31 ex A 0 1 B 0 1 B 0 A B A B 0 A B A B 1
33 simp3 A B 0 A B A B 1 A B 1
34 33 29 syl5ibr A 0 1 B 0 1 B 0 A B 0 A B A B 1 A B
35 32 34 impbid A 0 1 B 0 1 B 0 A B A B 0 A B A B 1
36 elicc01 A B 0 1 A B 0 A B A B 1
37 35 36 bitr4di A 0 1 B 0 1 B 0 A B A B 0 1