| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elunitrn |
|
| 2 |
1
|
3ad2ant1 |
|
| 3 |
|
elunitrn |
|
| 4 |
3
|
3ad2ant2 |
|
| 5 |
|
simp3 |
|
| 6 |
2 4 5
|
redivcld |
|
| 7 |
6
|
adantr |
|
| 8 |
|
elunitge0 |
|
| 9 |
8
|
3ad2ant1 |
|
| 10 |
|
elunitge0 |
|
| 11 |
10
|
adantr |
|
| 12 |
|
0re |
|
| 13 |
|
ltlen |
|
| 14 |
12 3 13
|
sylancr |
|
| 15 |
14
|
biimpar |
|
| 16 |
15
|
3impb |
|
| 17 |
16
|
3com23 |
|
| 18 |
11 17
|
mpd3an3 |
|
| 19 |
18
|
3adant1 |
|
| 20 |
|
divge0 |
|
| 21 |
2 9 4 19 20
|
syl22anc |
|
| 22 |
21
|
adantr |
|
| 23 |
|
1red |
|
| 24 |
|
ledivmul |
|
| 25 |
2 23 4 19 24
|
syl112anc |
|
| 26 |
|
ax-1rid |
|
| 27 |
26
|
breq2d |
|
| 28 |
4 27
|
syl |
|
| 29 |
25 28
|
bitr2d |
|
| 30 |
29
|
biimpa |
|
| 31 |
7 22 30
|
3jca |
|
| 32 |
31
|
ex |
|
| 33 |
|
simp3 |
|
| 34 |
33 29
|
imbitrrid |
|
| 35 |
32 34
|
impbid |
|
| 36 |
|
elicc01 |
|
| 37 |
35 36
|
bitr4di |
|