Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
unitdvcl
Next ⟩
dvrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
unitdvcl
Description:
The units are closed under division.
(Contributed by
Mario Carneiro
, 2-Jul-2014)
Ref
Expression
Hypotheses
unitdvcl.o
⊢
U
=
Unit
⁡
R
unitdvcl.d
⊢
×
˙
=
/
r
⁡
R
Assertion
unitdvcl
⊢
R
∈
Ring
∧
X
∈
U
∧
Y
∈
U
→
X
×
˙
Y
∈
U
Proof
Step
Hyp
Ref
Expression
1
unitdvcl.o
⊢
U
=
Unit
⁡
R
2
unitdvcl.d
⊢
×
˙
=
/
r
⁡
R
3
eqid
⊢
Base
R
=
Base
R
4
3
1
unitcl
⊢
X
∈
U
→
X
∈
Base
R
5
eqid
⊢
⋅
R
=
⋅
R
6
eqid
⊢
inv
r
⁡
R
=
inv
r
⁡
R
7
3
5
1
6
2
dvrval
⊢
X
∈
Base
R
∧
Y
∈
U
→
X
×
˙
Y
=
X
⋅
R
inv
r
⁡
R
⁡
Y
8
4
7
sylan
⊢
X
∈
U
∧
Y
∈
U
→
X
×
˙
Y
=
X
⋅
R
inv
r
⁡
R
⁡
Y
9
8
3adant1
⊢
R
∈
Ring
∧
X
∈
U
∧
Y
∈
U
→
X
×
˙
Y
=
X
⋅
R
inv
r
⁡
R
⁡
Y
10
1
6
unitinvcl
⊢
R
∈
Ring
∧
Y
∈
U
→
inv
r
⁡
R
⁡
Y
∈
U
11
10
3adant2
⊢
R
∈
Ring
∧
X
∈
U
∧
Y
∈
U
→
inv
r
⁡
R
⁡
Y
∈
U
12
1
5
unitmulcl
⊢
R
∈
Ring
∧
X
∈
U
∧
inv
r
⁡
R
⁡
Y
∈
U
→
X
⋅
R
inv
r
⁡
R
⁡
Y
∈
U
13
11
12
syld3an3
⊢
R
∈
Ring
∧
X
∈
U
∧
Y
∈
U
→
X
⋅
R
inv
r
⁡
R
⁡
Y
∈
U
14
9
13
eqeltrd
⊢
R
∈
Ring
∧
X
∈
U
∧
Y
∈
U
→
X
×
˙
Y
∈
U