Metamath Proof Explorer


Theorem unitdvcl

Description: The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses unitdvcl.o U = Unit R
unitdvcl.d × ˙ = / r R
Assertion unitdvcl R Ring X U Y U X × ˙ Y U

Proof

Step Hyp Ref Expression
1 unitdvcl.o U = Unit R
2 unitdvcl.d × ˙ = / r R
3 eqid Base R = Base R
4 3 1 unitcl X U X Base R
5 eqid R = R
6 eqid inv r R = inv r R
7 3 5 1 6 2 dvrval X Base R Y U X × ˙ Y = X R inv r R Y
8 4 7 sylan X U Y U X × ˙ Y = X R inv r R Y
9 8 3adant1 R Ring X U Y U X × ˙ Y = X R inv r R Y
10 1 6 unitinvcl R Ring Y U inv r R Y U
11 10 3adant2 R Ring X U Y U inv r R Y U
12 1 5 unitmulcl R Ring X U inv r R Y U X R inv r R Y U
13 11 12 syld3an3 R Ring X U Y U X R inv r R Y U
14 9 13 eqeltrd R Ring X U Y U X × ˙ Y U