Metamath Proof Explorer


Theorem unitg

Description: The topology generated by a basis B is a topology on U. B . Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006) (Proof shortened by OpenAI, 30-Mar-2020)

Ref Expression
Assertion unitg B V topGen B = B

Proof

Step Hyp Ref Expression
1 tg1 x topGen B x B
2 velpw x 𝒫 B x B
3 1 2 sylibr x topGen B x 𝒫 B
4 3 ssriv topGen B 𝒫 B
5 sspwuni topGen B 𝒫 B topGen B B
6 4 5 mpbi topGen B B
7 6 a1i B V topGen B B
8 bastg B V B topGen B
9 8 unissd B V B topGen B
10 7 9 eqssd B V topGen B = B