Step |
Hyp |
Ref |
Expression |
1 |
|
unitmulcl.1 |
|
2 |
|
unitgrp.2 |
|
3 |
1 2
|
unitgrpbas |
|
4 |
3
|
a1i |
|
5 |
1
|
fvexi |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
6 7
|
mgpplusg |
|
9 |
2 8
|
ressplusg |
|
10 |
5 9
|
mp1i |
|
11 |
1 7
|
unitmulcl |
|
12 |
|
eqid |
|
13 |
12 1
|
unitcl |
|
14 |
12 1
|
unitcl |
|
15 |
12 1
|
unitcl |
|
16 |
13 14 15
|
3anim123i |
|
17 |
12 7
|
ringass |
|
18 |
16 17
|
sylan2 |
|
19 |
|
eqid |
|
20 |
1 19
|
1unit |
|
21 |
12 7 19
|
ringlidm |
|
22 |
13 21
|
sylan2 |
|
23 |
|
simpr |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
1 19 24 25 26
|
isunit |
|
28 |
23 27
|
sylib |
|
29 |
13
|
adantl |
|
30 |
12 24 7
|
dvdsr2 |
|
31 |
29 30
|
syl |
|
32 |
25 12
|
opprbas |
|
33 |
|
eqid |
|
34 |
32 26 33
|
dvdsr2 |
|
35 |
29 34
|
syl |
|
36 |
31 35
|
anbi12d |
|
37 |
|
reeanv |
|
38 |
|
simprl |
|
39 |
29
|
ad2antrr |
|
40 |
12 24 7
|
dvdsrmul |
|
41 |
38 39 40
|
syl2anc |
|
42 |
|
simplll |
|
43 |
|
simplr |
|
44 |
12 7
|
ringass |
|
45 |
42 43 39 38 44
|
syl13anc |
|
46 |
|
simprrl |
|
47 |
46
|
oveq1d |
|
48 |
12 7 25 33
|
opprmul |
|
49 |
|
simprrr |
|
50 |
48 49
|
eqtr3id |
|
51 |
50
|
oveq2d |
|
52 |
45 47 51
|
3eqtr3d |
|
53 |
12 7 19
|
ringlidm |
|
54 |
42 38 53
|
syl2anc |
|
55 |
12 7 19
|
ringridm |
|
56 |
42 43 55
|
syl2anc |
|
57 |
52 54 56
|
3eqtr3d |
|
58 |
41 57 50
|
3brtr3d |
|
59 |
32 26 33
|
dvdsrmul |
|
60 |
43 39 59
|
syl2anc |
|
61 |
12 7 25 33
|
opprmul |
|
62 |
61 46
|
eqtrid |
|
63 |
60 62
|
breqtrd |
|
64 |
1 19 24 25 26
|
isunit |
|
65 |
58 63 64
|
sylanbrc |
|
66 |
65 46
|
jca |
|
67 |
66
|
rexlimdvaa |
|
68 |
67
|
expimpd |
|
69 |
68
|
reximdv2 |
|
70 |
37 69
|
syl5bir |
|
71 |
36 70
|
sylbid |
|
72 |
28 71
|
mpd |
|
73 |
4 10 11 18 20 22 72
|
isgrpde |
|