Metamath Proof Explorer


Theorem unitgrp

Description: The group of units is a group under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1 U = Unit R
unitgrp.2 G = mulGrp R 𝑠 U
Assertion unitgrp R Ring G Grp

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U = Unit R
2 unitgrp.2 G = mulGrp R 𝑠 U
3 1 2 unitgrpbas U = Base G
4 3 a1i R Ring U = Base G
5 1 fvexi U V
6 eqid mulGrp R = mulGrp R
7 eqid R = R
8 6 7 mgpplusg R = + mulGrp R
9 2 8 ressplusg U V R = + G
10 5 9 mp1i R Ring R = + G
11 1 7 unitmulcl R Ring x U y U x R y U
12 eqid Base R = Base R
13 12 1 unitcl x U x Base R
14 12 1 unitcl y U y Base R
15 12 1 unitcl z U z Base R
16 13 14 15 3anim123i x U y U z U x Base R y Base R z Base R
17 12 7 ringass R Ring x Base R y Base R z Base R x R y R z = x R y R z
18 16 17 sylan2 R Ring x U y U z U x R y R z = x R y R z
19 eqid 1 R = 1 R
20 1 19 1unit R Ring 1 R U
21 12 7 19 ringlidm R Ring x Base R 1 R R x = x
22 13 21 sylan2 R Ring x U 1 R R x = x
23 simpr R Ring x U x U
24 eqid r R = r R
25 eqid opp r R = opp r R
26 eqid r opp r R = r opp r R
27 1 19 24 25 26 isunit x U x r R 1 R x r opp r R 1 R
28 23 27 sylib R Ring x U x r R 1 R x r opp r R 1 R
29 13 adantl R Ring x U x Base R
30 12 24 7 dvdsr2 x Base R x r R 1 R y Base R y R x = 1 R
31 29 30 syl R Ring x U x r R 1 R y Base R y R x = 1 R
32 25 12 opprbas Base R = Base opp r R
33 eqid opp r R = opp r R
34 32 26 33 dvdsr2 x Base R x r opp r R 1 R m Base R m opp r R x = 1 R
35 29 34 syl R Ring x U x r opp r R 1 R m Base R m opp r R x = 1 R
36 31 35 anbi12d R Ring x U x r R 1 R x r opp r R 1 R y Base R y R x = 1 R m Base R m opp r R x = 1 R
37 reeanv y Base R m Base R y R x = 1 R m opp r R x = 1 R y Base R y R x = 1 R m Base R m opp r R x = 1 R
38 simprl R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R m Base R
39 29 ad2antrr R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R x Base R
40 12 24 7 dvdsrmul m Base R x Base R m r R x R m
41 38 39 40 syl2anc R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R m r R x R m
42 simplll R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R R Ring
43 simplr R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y Base R
44 12 7 ringass R Ring y Base R x Base R m Base R y R x R m = y R x R m
45 42 43 39 38 44 syl13anc R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y R x R m = y R x R m
46 simprrl R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y R x = 1 R
47 46 oveq1d R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y R x R m = 1 R R m
48 12 7 25 33 opprmul m opp r R x = x R m
49 simprrr R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R m opp r R x = 1 R
50 48 49 eqtr3id R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R x R m = 1 R
51 50 oveq2d R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y R x R m = y R 1 R
52 45 47 51 3eqtr3d R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R 1 R R m = y R 1 R
53 12 7 19 ringlidm R Ring m Base R 1 R R m = m
54 42 38 53 syl2anc R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R 1 R R m = m
55 12 7 19 ringridm R Ring y Base R y R 1 R = y
56 42 43 55 syl2anc R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y R 1 R = y
57 52 54 56 3eqtr3d R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R m = y
58 41 57 50 3brtr3d R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y r R 1 R
59 32 26 33 dvdsrmul y Base R x Base R y r opp r R x opp r R y
60 43 39 59 syl2anc R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y r opp r R x opp r R y
61 12 7 25 33 opprmul x opp r R y = y R x
62 61 46 eqtrid R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R x opp r R y = 1 R
63 60 62 breqtrd R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y r opp r R 1 R
64 1 19 24 25 26 isunit y U y r R 1 R y r opp r R 1 R
65 58 63 64 sylanbrc R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y U
66 65 46 jca R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y U y R x = 1 R
67 66 rexlimdvaa R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y U y R x = 1 R
68 67 expimpd R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y U y R x = 1 R
69 68 reximdv2 R Ring x U y Base R m Base R y R x = 1 R m opp r R x = 1 R y U y R x = 1 R
70 37 69 syl5bir R Ring x U y Base R y R x = 1 R m Base R m opp r R x = 1 R y U y R x = 1 R
71 36 70 sylbid R Ring x U x r R 1 R x r opp r R 1 R y U y R x = 1 R
72 28 71 mpd R Ring x U y U y R x = 1 R
73 4 10 11 18 20 22 72 isgrpde R Ring G Grp