Metamath Proof Explorer


Theorem unitgrpbas

Description: The base set of the group of units. (Contributed by Mario Carneiro, 25-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1 U = Unit R
unitgrp.2 G = mulGrp R 𝑠 U
Assertion unitgrpbas U = Base G

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U = Unit R
2 unitgrp.2 G = mulGrp R 𝑠 U
3 eqid Base R = Base R
4 3 1 unitss U Base R
5 eqid mulGrp R = mulGrp R
6 5 3 mgpbas Base R = Base mulGrp R
7 2 6 ressbas2 U Base R U = Base G
8 4 7 ax-mp U = Base G