Metamath Proof Explorer


Theorem unitgrpid

Description: The identity of the multiplicative group is 1r . (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitmulcl.1 U = Unit R
unitgrp.2 G = mulGrp R 𝑠 U
unitgrp.3 1 ˙ = 1 R
Assertion unitgrpid R Ring 1 ˙ = 0 G

Proof

Step Hyp Ref Expression
1 unitmulcl.1 U = Unit R
2 unitgrp.2 G = mulGrp R 𝑠 U
3 unitgrp.3 1 ˙ = 1 R
4 1 3 1unit R Ring 1 ˙ U
5 eqid Base R = Base R
6 5 1 unitss U Base R
7 2 5 3 ringidss R Ring U Base R 1 ˙ U 1 ˙ = 0 G
8 6 7 mp3an2 R Ring 1 ˙ U 1 ˙ = 0 G
9 4 8 mpdan R Ring 1 ˙ = 0 G