Metamath Proof Explorer


Theorem unitinvcl

Description: The inverse of a unit exists and is a unit. (Contributed by Mario Carneiro, 2-Dec-2014)

Ref Expression
Hypotheses unitinvcl.1 U = Unit R
unitinvcl.2 I = inv r R
Assertion unitinvcl R Ring X U I X U

Proof

Step Hyp Ref Expression
1 unitinvcl.1 U = Unit R
2 unitinvcl.2 I = inv r R
3 eqid mulGrp R 𝑠 U = mulGrp R 𝑠 U
4 1 3 unitgrp R Ring mulGrp R 𝑠 U Grp
5 1 3 unitgrpbas U = Base mulGrp R 𝑠 U
6 1 3 2 invrfval I = inv g mulGrp R 𝑠 U
7 5 6 grpinvcl mulGrp R 𝑠 U Grp X U I X U
8 4 7 sylan R Ring X U I X U