Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
unitinvcl
Next ⟩
unitinvinv
Metamath Proof Explorer
Ascii
Unicode
Theorem
unitinvcl
Description:
The inverse of a unit exists and is a unit.
(Contributed by
Mario Carneiro
, 2-Dec-2014)
Ref
Expression
Hypotheses
unitinvcl.1
⊢
U
=
Unit
⁡
R
unitinvcl.2
⊢
I
=
inv
r
⁡
R
Assertion
unitinvcl
⊢
R
∈
Ring
∧
X
∈
U
→
I
⁡
X
∈
U
Proof
Step
Hyp
Ref
Expression
1
unitinvcl.1
⊢
U
=
Unit
⁡
R
2
unitinvcl.2
⊢
I
=
inv
r
⁡
R
3
eqid
⊢
mulGrp
R
↾
𝑠
U
=
mulGrp
R
↾
𝑠
U
4
1
3
unitgrp
⊢
R
∈
Ring
→
mulGrp
R
↾
𝑠
U
∈
Grp
5
1
3
unitgrpbas
⊢
U
=
Base
mulGrp
R
↾
𝑠
U
6
1
3
2
invrfval
⊢
I
=
inv
g
⁡
mulGrp
R
↾
𝑠
U
7
5
6
grpinvcl
⊢
mulGrp
R
↾
𝑠
U
∈
Grp
∧
X
∈
U
→
I
⁡
X
∈
U
8
4
7
sylan
⊢
R
∈
Ring
∧
X
∈
U
→
I
⁡
X
∈
U